29 research outputs found

    Theoretical vs. empirical classification and prediction of congested traffic states

    Get PDF
    Starting from the instability diagram of a traffic flow model, we derive conditions for the occurrence of congested traffic states, their appearance, their spreading in space and time, and the related increase in travel times. We discuss the terminology of traffic phases and give empirical evidence for the existence of a phase diagram of traffic states. In contrast to previously presented phase diagrams, it is shown that "widening synchronized patterns” are possible, if the maximum flow is located inside of a metastable density regime. Moreover, for various kinds of traffic models with different instability diagrams it is discussed, how the related phase diagrams are expected to approximately look like. Apart from this, it is pointed out that combinations of on- and off-ramps create different patterns than a single, isolated on-ram

    Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication

    Get PDF
    In this paper, a minimalist, completely distributed freeway traffic information system is introduced. It involves an autonomous, vehicle-based jam front detection, the information transmission via inter-vehicle communication, and the forecast of the spatial position of jam fronts by reconstructing the spatiotemporal traffic situation based on the transmitted information. The whole system is simulated with an integrated traffic simulator, that is based on a realistic microscopic traffic model for longitudinal movements and lane changes. The function of its communication module has been explicitly validated by comparing the simulation results with analytical calculations. By means of simulations, we show that the algorithms for a congestion-front recognition, message transmission, and processing predict reliably the existence and position of jam fronts for vehicle equipment rates as low as 3%. A reliable mode of operation already for small market penetrations is crucial for the successful introduction of inter-vehicle communication. The short-term prediction of jam fronts is not only useful for the driver, but is essential for enhancing road safety and road capacity by intelligent adaptive cruise control systems.Comment: Published in the Proceedings of the Annual Meeting of the Transportation Research Board 200

    DECENTRALIZED APPROACHES TO ADAPTIVE TRAFFIC CONTROL AND AN EXTENDED LEVEL OF SERVICE CONCEPT

    Get PDF
    Traffic systems are highly complex multi-component systems suffering from instabilities and non-linear dynamics, including chaos. This is caused by the non-linearity of interactions, delays, and fluctuations, which can trigger phenomena such as stop-and-go waves, noise-induced breakdowns, or slower-is-faster effects. The recently upcoming information and communication technologies (ICT) promise new solutions leading from the classical, centralized control to decentralized approaches in the sense of collective (swarm) intelligence and ad hoc networks. An interesting application field is adaptive, self-organized traffic control in urban road networks. We present control principles that allow one to reach a self-organized synchronization of traffic lights. Furthermore, vehicles will become automatic traffic state detection, data management, and communication centers when forming ad hoc networks through inter-vehicle communication (IVC). We discuss the mechanisms and the efficiency of message propagation on freeways by short-range communication. Our main focus is on future adaptive cruise control systems (ACC), which will not only increase the comfort and safety of car passengers, but also enhance the stability of traffic flows and the capacity of the road (“traffic assistance”). We present an automated driving strategy that adapts the operation mode of an ACC system to the autonomously detected, local traffic situation. The impact on the traffic dynamics is investigated by means of a multi-lane microscopic traffic simulation. The simulation scenarios illustrate the efficiency of the proposed driving strategy. Already an ACC equipment level of 10% improves the traffic flow quality and reduces the travel times for the drivers drastically due to delaying or preventing a breakdown of the traffic flow. For the evaluation of the resulting traffic quality, we have recently developed an extended level of service concept (ELOS). We demonstrate our concept on the basis of travel times as the most important variable for a user-oriented quality of service

    Volatile Decision Dynamics: Experiments, Stochastic Description, Intermittency Control, and Traffic Optimization

    Full text link
    The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc., they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified ways of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems, and for information service providers. One of the promising fields of application is traffic optimization.Comment: For related work see http://www.helbing.or

    One-dimensional Particle Processes with Acceleration/Braking Asymmetry

    Get PDF
    The slow-to-start mechanism is known to play an important role in the particular shape of the Fundamental diagram of traffic and to be associated to hysteresis effects of traffic flow.We study this question in the context of exclusion and queueing processes,by including an asymmetry between deceleration and acceleration in the formulation of these processes. For exclusions processes, this corresponds to a multi-class process with transition asymmetry between different speed levels, while for queueing processes we consider non-reversible stochastic dependency of the service rate w.r.t the number of clients. The relationship between these 2 families of models is analyzed on the ring geometry, along with their steady state properties. Spatial condensation phenomena and metastability is observed, depending on the level of the aforementioned asymmetry. In addition we provide a large deviation formulation of the fundamental diagram (FD) which includes the level of fluctuations, in the canonical ensemble when the stationary state is expressed as a product form of such generalized queues.Comment: 28 pages, 8 figure

    Saving Human Lives: What Complexity Science and Information Systems can Contribute

    Get PDF
    We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.Comment: 67 pages, 25 figures; accepted for publication in Journal of Statistical Physics [for related work see http://www.futurict.eu/

    Experimentelle Blastome allein durch chronische Arsenvergiftung

    No full text

    Designing output-power-optimized thermoelectric generators via analytic and finite element method modelling

    No full text
    Thermoelectric generators (TEG) are capable of transforming waste heat directly into electric power. They are very reliable and do not need any kind of maintenance at all, which makes them interesting for a wide range of applications. To design specific TEG for different purposes a fast and cheap tool is needed to optimize the geometric structure based on the used materials and boundary conditions. Therefore, we tested a commercial finite element method simulation versus a self-implemented analytic calculation and compared them with real measurements. The results of the two simulations types were in good agreement to each other and near by the measured value. Beside the length of the thermocouple as a well-known design parameter, two more relevant parameters have been proposed. The thermal conduction of the hot/cold side and the geometrical matching of the n/p-doped thermoelectric material have a great influence on the device performance
    corecore